
An Acad Bras Cienc (2022) 94(Suppl. 3): e20211530 DOI 10.1590/0001-3765202220211530
Anais da Academia Brasileira de Ciências  |  Annals of the Brazilian Academy of Sciences
Printed ISSN 0001-3765 I Online ISSN 1678-2690
www.scielo.br/aabc  |  www.fb.com/aabcjournal

An Acad Bras Cienc (2022) 94(Suppl. 3)

Running title: ENVIRONMENTAL 
DISTURBANCES AND ZOONOTIC 
SPILLOVER

Academy Section: BIOMEDICAL 

SCIENCES

e20211530

94 
(Suppl. 3)
94(Suppl. 3)

DOI
10.1590/0001-3765202220211530

BIOMEDICAL SCIENCES

Synthesizing the connections 
between environmental disturbances 
and zoonotic spillover

JOEL HENRIQUE ELLWANGER, PHILIP MARTIN FEARNSIDE, MARINA ZILIOTTO, 
JACQUELINE MARÍA VALVERDE-VILLEGAS, ANA BEATRIZ G. DA VEIGA, GUSTAVO F. 
VIEIRA, EVELISE BACH, JÁDER C. CARDOSO, NÍCOLAS FELIPE D. MÜLLER, GABRIEL 
LOPES, LÍLIAN CAESAR, BRUNA KULMANN-LEAL, VALÉRIA L. KAMINSKI, ETIELE 
S. SILVEIRA, FERNANDO R. SPILKI, MATHEUS N. WEBER, SABRINA E. DE MATOS 
ALMEIDA, VANUSA P. DA HORA & JOSÉ ARTUR B. CHIES

Abstract: Zoonotic spillover is a phenomenon characterized by the transfer of pathogens 
between different animal species. Most human emerging infectious diseases originate 
from non-human animals, and human-related environmental disturbances are the 
driving forces of the emergence of new human pathogens. Synthesizing the sequence 
of basic events involved in the emergence of new human pathogens is important for 
guiding the understanding, identifi cation, and description of key aspects of human 
activities that can be changed to prevent new outbreaks, epidemics, and pandemics. 
This review synthesizes the connections between environmental disturbances and 
increased risk of spillover events based on the One Health perspective. Anthropogenic 
disturbances in the environment (e.g., deforestation, habitat fragmentation, biodiversity 
loss, wildlife exploitation) lead to changes in ecological niches, reduction of the dilution 
effect, increased contact between humans and other animals, changes in the incidence 
and load of pathogens in animal populations, and alterations in the abiotic factors of 
landscapes. These phenomena can increase the risk of spillover events and, potentially, 
facilitate new infectious disease outbreaks. Using Brazil as a study model, this review 
brings a discussion concerning anthropogenic activities in the Amazon region and their 
potential impacts on spillover risk and spread of emerging diseases in this region.
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INTRODUCTION
A robust set of evidence shows that conservation 
of biodiversity and of balance in ecosystems 
and food webs reduces the risk of emergence 
and spread of infectious diseases of zoonotic 
origin, in addition to contributing to human 
well-being in general (Ostfeld 2009, Keesing 
et al. 2010, Pecl et al. 2017, IPBES 2020). From a 
practical point of view, limiting anthropogenic 
activity in environments with high abundance 

and diversity of species contributes to the 
maintenance of human and environmental 
health, containing emerging infectious diseases 
by multiple ecological mechanisms. On the 
other hand, anthropogenic disturbances (e.g., 
deforestation, habitat fragmentation, intensive 
agricultural practices, unplanned urbanization) 
indeed affect this balance, facilitating the 
emergence of new pathogens and the spread 
of diseases (Ellwanger et al. 2020, IPBES 2020). 
On a global scale, land-use change was the 
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major driver of more than 30% of new emerging 
infectious-disease events since 1960 (IPBES 
2020).

Currently, there are more than 7.7 billion 
humans on Earth. Projections indicate that the 
world population will reach 9.4 to 10.2 billion 
people by 2050 (Boretti & Rosa 2019). Economic, 
political, social, and cultural factors dictate 
human activities in the natural environment, 
many of which cause damage and disturbances 
to the environment and to animal populations. 
The food, water, and consumption demands of 
the global population are putting great pressure 
on nature and triggering a range of environmental 
problems, with expected exacerbation of this 
scenario in the near future due to the growing 
world population (Conijn et al. 2018, Boretti & 
Rosa 2019, Pastor et al. 2019). 

The connections between environmental 
disturbances and infectious diseases are 
increasingly worrying because efforts to contain 
deforestation, climate change, and other 
environmental impacts are still very modest. 
Globally, habitat loss and extinction rates are on 
the rise (Ceballos et al. 2015, Newbold et al. 2016, 
Powers & Jetz 2019), and the detrimental effects 
of climate change on the human population and 
other species are increasingly evident (Beyer et 
al. 2021, Ma & Yuan 2021). Concomitant with this 
scenario of environmental neglect, the number 
of emerging infectious disease events per decade 
is increasing (Jones et al. 2008). Table I shows 
several examples of infectious disease outbreaks 
associated with anthropogenic pressures on the 
environment and animal populations. Also, the 
economic impacts and losses of human lives 
related to Coronavirus Disease 19 (COVID-19), 
which is a zoonotic disease, make clear the 
magnitude and severity of the situation and the 
need to understand how to reduce the risks of 
new pandemics (Dobson et al. 2020, Holmes et 
al. 2021). As of February 2, 2022, COVID-19 had 

caused more than 381 million infection cases and 
5,688,009 deaths worldwide (Dong et al. 2020, 
Johns Hopkins University 2022). It is increasingly 
clear that when a pathogen emerges in a given 
human population after an event of zoonotic 
spillover, even in a remote location, the pathogen 
can quickly spread globally by international air 
travel and other transport systems, especially in 
situations of high connectivity between remote 
regions and large urban centers.

Zoonotic spillover is a phenomenon 
characterized by the transfer of pathogens 
between different species (usually non-
human animals to humans), which may result 
in new infectious diseases if biological and 
demographic conditions are conducive to the 
adaptation of the pathogen in the new species 
population. Spillover events are among the 
initial steps towards the emergence of new 
human infectious diseases, outbreaks, and 
epidemics (Plowright et al. 2017, Ellwanger et 
al. 2019). Most of the pathogens (~60%) that 
affect humans are derived from microbial 
strains that previously circulated only in non-
human animals (Jones et al. 2008), such as HIV 
(Keele et al. 2006), influenza A viruses (Krammer 
et al. 2018), Zika virus (Wikan & Smith 2016), 
Ebola virus (Leroy et al. 2005, Saéz et al. 2015), 
rubella virus (Bennett et al. 2020), Echinococcus 
multilocularis, Trypanosoma cruzi (Thompson 
2013), hepatitis B virus (Rasche et al. 2016), 
MERS-CoV, SARS-CoV (Cui et al. 2019) and SARS-
CoV-2 (Andersen et al. 2020), among many others 
(Montgomery & Macdonald 2020). Considering 
adenoviruses, phylogenetic analyses indicate 
that at least 16 B-type human adenoviruses 
(HAdV) had their original reservoir in great apes, 
some of them causing severe human disease. 
Also, it was proposed that the HAdV-B76 strain, 
which is associated with a human fatality in 
1965, arose from recombination of a virus that 
infected humans, chimpanzees, and bonobos 
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Table I. Examples of connections among human-related environmental disturbance, animal populations and infectious diseases.

Anthropogenic pressures on 
the environment and animal 

populations*
Effect or association with disease emergence or dissemination References

Habitat loss, deforestation, 
industrial agriculture, 

monoculture practices, 
mining, and other types of 

land-use changes

Forest fragmentation, fires and other disruptions of natural habitats of bats resulted in outbreaks of Nipah and 
Hendra viruses in Australasia

Field et al. (2001), Chua (2003), 
Epstein et al. (2006)

Deforestation and road expansion were associated with increased human-biting rate of Anopheles darlingi 
(primary malaria vector) in the Peruvian Amazon

Vittor et al. (2006)

Habitat fragmentation and biodiversity loss were associated with a higher prevalence of Trypanosoma cruzi 
infection among small mammals in an Atlantic Rain Forest landscape of Brazil

Vaz et al. (2007)

Increasing of land cultivated for sugarcane and high annual mean temperature were associated with hantavirus 
pulmonary syndrome incidence in the Neotropics

Prist et al. (2016)

Forest loss triggered increased risk of Kyasanur Forest disease (tick-borne viral hemorrhagic fever) in India Walsh et al. (2019a)

Habitat changes of putative wild rodent reservoirs and agriculture-related activities were associated with 
fatalities from Sabiá virus infection (two in 1990 decade and one in 2020), São Paulo State, Brazil

Ellwanger & Chies (2017), 
Malta et al. (2020)

Land-use (e.g., habitat degradation) was associated with changes in parasite richness and prevalence, as well as 
co-infection patterns, of avian parasites

Reis et al. (2021)

Agricultural and irrigation practices were associated with mosquito proliferation, with increases in Japanese 
encephalitis cases

Keiser et al. (2005)

Deforestation for agriculture and cattle pasture was associated with development and dissemination of 
antibiotic resistance in the Amazonian soil microbiome

Lemos et al. (2021)

Anthropogenic deforestation associated with the shortage of fruiting due to drought-triggered movement of fruit 
bats to livestock areas, infecting pigs and then humans with Nipah virus in Malaysia

Chua et al. (2002), Looi & Chua 
(2007)

Colonial practices in Indigenous areas had a major impact on the health of Indigenous populations, who were 
exposed to various infectious diseases transmitted by European colonizers and explorers in American and 

African continents, for example

Valeggia & Snodgrass (2015), 
Owers et al. (2017)

Mining, logging, illegal land grabbing and other types of land-use changes in Indigenous lands favors the 
transmission of SARS-CoV-2, malaria, sexually transmitted infections, and other infectious diseases in Amazonian 

Indigenous populations

Ellwanger et al. (2020), Vittor 
et al. (2021)

In Brazil, political changes permissible to illegal activities (e.g., logging, mining, fires, weakening of Indigenous 
leaders) on Indigenous Lands (Terras Indígenas) exposed Indigenous and traditional communities to multiple 

infectious diseases, including COVID-19

Brancalion et al. (2020), 
Ferrante et al. (2020)

Mining and other types of land-use changes were associated with Buruli ulcer (caused by Mycobacterium 
ulcerans infection) in southwestern Ghana

Wu et al. (2015)

Agricultural practices exacerbated the risks of many infectious and parasitic diseases (hookworm, malaria, scrub 
typhus, spotted fever group diseases, schistosomiasis, Trichuris trichuria infection) in Southeast Asia

Shah et al. (2019)

Mining related practices favored emerging infectious disease events in Africa, including Ebola outbreaks, with 
mining-associated political interests exacerbating such outbreaks

Wallace et al. (2016), Guégan 
et al. (2020), Ostergard Jr 

(2021)
Monoculture and other current food systems practices expose populations to various health issues, including 
infectious and parasitic diseases (in some cases derived from malnutrition) and multi-resistant microbes at a 

global scale

Pradyumna et al. (2019), 
Everard et al. (2020)

Gold mine workers are highly exposed to hantavirus infection, malaria and leishmaniasis in South America
Rotureau et al. (2006), Terças-

Trettel et al. (2019)
Agricultural systems bring some bat species (e.g., Desmodus rotundus vampire bat) closer to humans and 

domestic animals, increasing the risk of bat-borne infections, including rabies outbreaks
Rosa et al. (2006), Kuzmin et 

al. (2011)
Infectious diseases events were associated with changes in forest cover and oil palm expansion at a global scale Morand & Lajaunie (2021)

Sugar cane monoculture favors some opportunistic rodents, favoring hantavirus infection in humans Figueiredo et al. (2010)
Gold mining-associated activities and settlements favor the spread of infectious diseases (e.g., tuberculosis, HIV/
AIDS and other sexually transmitted infections, rabies, vector-borne diseases) in Australia, Africa, North America, 

and South America

Ogola et al. (2002), Eisler 
(2003)

Anthropogenic disturbances (e.g., crop plantation, removal of vegetation cover for cattle raising) lead to 
simplification of ecosystems (biodiversity loss) and thus favor populations of opportunistic/generalist animal 

species that can transmit hemorrhagic fever viruses to humans
Mills (2006)

Co-circulation of Araraquara and Juquitiba hantaviruses in rodents was detected in the Brazilian Cerrado biome, 
with agricultural practices increasing the risk of human hantavirus infection

Guterres et al. (2018)
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Climate change and extreme 
weather events

Climatic anomalies (with heavy rainfall and eventually flooding after periods of drought) and increase in air and 
sea surface temperatures triggered outbreaks of Rift Valley Fever in Africa

Anyamba et al. (2001), Martin 
et al. (2008)

Fossil fuel-related climate change associated with air pollution favor the occurrence of respiratory infections 
(e.g, pneumonia, fungal infection, Hantavirus respiratory disease), especially in children

Mirsaeidi et al. (2016), Brugha 
& Grigg (2014)

An increase in coccidioidomycosis cases in Arizona from 1998 to 2001 was associated with climatic and 
environmental changes such as wind, mean temperature, dust and rainfall because these factors affect the 

abundance of fungal arthrospores of Coccidioides species in the air
Park et al. (2005)

Extreme weather events, in association with de-urbanization, were associated with higher risk of flood-related 
non-cholera diarrhea in lower hygiene and sanitation groups in a post-flood period in Dhaka, Bangladesh. 
Rotavirus, Escherichia coli, Campylobacter and Aeromonas were the most common pathogens causing non-

cholera diarrhea episodes

Hashizume et al. (2008)

Climate change was associated with increased human cases of Lyme disease Germain et al. (2019)

Fossil fuel-related climate change will change the distribution patterns of zoonotic and vector-borne diseases in 
the world in a way difficult to accurately predict, but in general favoring the spread of these diseases on a global 

scale

Wilkinson et al. (2007), Greer 
et al. (2008), Dantas-Torres 
(2015), Wilke et al. (2019b)

Climate change and land-use change were associated with an increased risk of acute gastrointestinal diseases Brubacher et al. (2020)

Climate abnormalities and melting of permafrost released Bacillus anthracis, the etiological agent of the anthrax 
disease, infecting reindeer, cattle, and humans

Timofeev et al. (2019), 
Maksimović et al. (2017), Stella 

et al. (2020)
Temperature rise alters the distribution, optimal conditions for breeding, growth and survival of Schistosoma-

related snails, and such conditions were associated with increased risk of spread and transmission of 
schistosomiasis

Kalinda et al. (2017)

Hunting, industrial livestock 
production, bushmeat 

practices, and other types of 
wildlife exploitation

Bushmeat-related practices triggered the SARS-CoV emergence and outbreak in Asia in 2003 and 2004
Tu et al. (2004), Kan et al. 
(2005), Wang et al. (2006)

Pervasive contact with wildlife (e.g., hunting, bushmeat-related practices), in association with forest 
fragmentation and loss, triggered Ebola virus disease outbreaks in Africa

Judson et al. (2016), Olivero et 
al. (2017), Rulli et al. (2017)

Coccidioimycosis cases resulted from armadillo hunting
Costa et al. (2001), Brillhante 
et al. (2012), Capellão et al. 

(2015)
Poultry and livestock are sources of multiresistant E. coli isolates with clinical importance in China Yassin et al. (2017)

Livestock and poultry are sources of antimicrobial resistance genes of Enterococcus spp. isolates in Lithuania Ruzauskas et al. (2009)
An animal-based agriculture river system was associated with antimicrobial resistance of Salmonella sp. in 

Brazil, with multi-resistance found in 18% of isolates
Palhares et al. (2014)

Poultry and food products (e.g., retail meat, sushi, ready-to-eat foods) are sources of multi-resistant and 
methicillin-resistant Staphylococcus aureus isolates in Europe

Nemati et al. (2008), Li et al. 
(2019)

A swine production system was associated with anti-microbial resistance in Campylobacter spp., E. coli and 
Enterococcus spp. in Australia

Hart et al. (2004)

Antimicrobial resistance and virulence genes of Streptococcus and Salmonella enterica were detected in isolates 
obtained from dairy cows in Asian countries

Chuanchuen et al. (2010), Ding 
et al. (2016)

Animals raised for consumption (e.g., chickens, pigs, cattle) use the majority (73%) of antimicrobials sold in 
the world, and these animals are major sources of multiple multi-resistant microbes, especially in developing 

countries and emerging economies, such as India, China, Brazil and Iran
Van Boeckel et al. (2019)

Hunting, cleaning and eating of armadillos were associated with the development of Hansen’s disease 
(Mycobacterium leprae infection) in humans

Capellão et al. (2015), Van 
Vliet et al. (2017), da Silva et 

al. (2018)
Human-promoted elephant-livestock interface increased anthrax transmission risk in India Walsh et al. (2019b)

The wildlife exploitation through hunting and trade of threatened wildlife species favors  close contact between 
humans and wildlife, which are contributing factors of spillover events

Johnson et al. (2020)

Human interaction with animal species (wildlife exploitation, animal trade, livestock industry?) triggered the 
SARS-CoV-2 emergence and the related COVID-19 pandemic

Lam et al. (2020), Zhang & 
Holmes (2020), Zhang et al. 
(2020), Holmes et al. (2021)

Livestock/agro-pastoral activities were associated with occurrence of zoonotic diseases, such as brucellosis, 
Q-fever, and Rift Valley fever, affecting both humans and livestock in Ethiopia

Ibrahim et al. (2021)

Hunting, bushmeat and related activities caused the HIV spillover from wild primates to humans in Africa 
(around 1920 or before), later (around 1960) spreading around the world as a result of road expansion and 

globalization, among other social and economic factors

Hahn et al. (2000), Gray et 
al. (2009), Faria et al. (2014), 

Gryseels et al. (2020)

Reassortment of different influenza viruses in swine creates new subtypes of influenza, the causative agent 
of the Spanish flu (1918) and the swine flu (2009); Influenza reassortment events are facilitated by livestock 

practices

Tomley & Shirley (2009), Shi et 
al. (2014)

Table I. Continuation.
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(Hoppe et al. 2015, Dehghan et al. 2019, Kremer 
2021).

In this article, the expression ‘zoonotic 
spillover’ will be used to refer to the introduction 
of a pathogen into the human population from a 
different animal species. However, it is essential 
to emphasize that spillover is a complex 
phenomenon. There are different pathways of 
spillover events. For example, a pathogen can 
be transmitted from one species (source host) 
to another (recipient host) directly, without 
an intermediate species. Alternatively, some 
spillover events involve an intermediate species 
(intermediary host) that acts as a ‘bridge’ for 
the transmission of the pathogen between 
the source host and the recipient host. The 
intermediary host can be a vertebrate species 
or an invertebrate animal (e.g., mosquito, 

tick). More than one intermediate host may be 
involved in the spillover event. Also, the spillover 
can involve the environment. In this case, the 
recipient host is infected by the pathogen that 
has been released into the environment by the 
source or intermediate host (Borremans et al. 
2019, Ellwanger & Chies 2021).

The association between anthropogenic 
activity and emerging infectious diseases has 
been increasingly recognized by the scientific 
community and by the general population since 
the beginning of the COVID-19 pandemic, with 
some positive impact on public concern and 
awareness about nature and environmental 
issues (Rousseau & Deschacht 2020, Severo 
et al. 2021). A search on the PubMed database 
using in association the terms “environmental 
change” and “pandemic” resulted in 1974 

Urbanization, de-
urbanization, and 

environmental changes due 
to infrastructure expansion

The construction of the Binational Itaipu Reservoir contributed to the proliferation of Anopheles mosquitoes and 
the increase in Plasmodium vivax malaria cases in the region of the Paraná River (Brazil)

Falavigna-Guilherme et al. 
(2005), Leandro et al. (2021)

In Fiji, the presence of Leptospira antibodies was associated with different environmental and socio-
demographic variables such as living in villages, lack of access to treated water, working outdoors, living in rural 

areas, high poverty rates, contact with animals, among other factors
Lau et al. (2016)

The construction of dams was associated with malaria transmission in sub-Saharan Africa
Lautze et al. (2007), Kibret et 

al. (2019)

Poorly planned urbanization, presence of waste, and precarious sanitation conditions were linked to the 
proliferation of Aedes aegypti mosquitoes and circulation of urban arboviruses (e.g., dengue, chikungunya and 

zika)
Almeida et al. (2020)

Poor housing conditions in association with loss of habitat and food sources favor the infestation of human 
dwellings by triatomine bugs, transmitters of T. cruzi (Chagas disease agent)

Starr et al. (1991), Schofield et 
al. (1999), Lima et al. (2012), 

Crocco et al. (2019)

Human contact with wildlife that resulted from mining and entering caves  promoted Marburg virus outbreaks in 
Africa (infection source linked to bats in caves and mines)

Bausch et al. (2003), Pawęska 
et al. (2018), Amman et al. 

(2020)  

Higher risk of schistosomiasis infection due to the construction of dams (water blockage) in Africa Sokolow et al. (2017)

Overcrowding, environmental contamination, exposure to disease vectors and lack of public health infrastructure 
favors the transmission of infectious and parasitic diseases in Indigenous populations in many countries

Gracey & King (2009)

Marginalized and Indigenous peoples in the United States and Brazil experience disproportionate burdens of 
COVID-19 (both morbidity and mortality) due to social injustice, lack of vaccines and public health infrastructure, 

and political weakening of Indigenous leaders

Santos et al. (2020), Costa et 
al. (2021), Hiraldo et al. (2021)

Infrastructure problems, water contamination and poverty favor infectious and parasitic diseases in Indigenous 
populations of the Arctic

Hotez (2010)

*Many types of anthropogenic pressures on the environment and on animal populations have been grouped by categories for better organization of 
the table. However, we stress that in many examples, different categories of anthropogenic actions are acting in association to favor the emergence 
or spread of disease. At the global level, intensive causes/practices of land-use changes (e.g., logging, mining, industrial livestock production, fossil 
fuel extraction, deforestation) certainly have a much greater impact as drivers of spillover and emerging infectious disease events than individual 
practices of consumption and behavior.

Table I. Continuation.
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documents published in 2021, a huge increase 
compared to the 64 documents published in 
2019 (https://pubmed.ncbi.nlm.nih.gov/; search 
performed on February 2, 2022). However, the 
connections and ecological mechanisms linking 
environmental disturbance and increased risk 
of zoonotic spillover events are not always 
explored in scientific publications. Synthesizing 
the sequence of basic events involved in the 
emergence of new human pathogens is important 
to guide the understanding, identification, and 
description of key aspects of human activities 
that can be changed to prevent new outbreaks, 
epidemics, and pandemics. This knowledge 
is critical for researchers from different 
fields. Thus, the main aim of this review is to 
synthesize the principal connections between 
environmental disturbances and increased risk 
of spillover events. In this article, ‘environmental 
disturbance’ refers to disturbance, damage or 
imbalance caused by human activity on natural 
landscapes, urban and rural areas, animal 
populations, or ecosystems. 

Considering the multiple dimensions 
surrounding the association between 
anthropogenic activity and infectious diseases, 
this article was written with the collaboration of 
authors from multiple fields, a strategy aligned 
with the One Health perspective. In the first 
part of this article, we briefly discussed the 
relationship between biodiversity and spillover 
risk. Subsequently, the connections between 
environmental disturbances and spillover 
events are reviewed. Considering the authors’ 
expertise on tropical ecosystems in the Brazilian 
context, this review also brings a discussion 
concerning anthropogenic activities in the 
Amazon region and their potential impacts on 
spillover risk and spread of emerging infectious 
diseases in this region. This article therefore 
differs from the literature on emerging diseases 
because it brings together basic information on 

anthropogenic activities that facilitate zoonotic 
spillover events in different contexts and 
countries, and it provides an analysis focused 
on a specific highly biodiverse biome - the 
Amazon Forest.

BIODIVERSITY AND SPILLOVER RISK
Biodiversity can be associated with an increased 
risk of infectious diseases in some situations. 
For example, this can occur by adding new 
infectious agents or carriers to the environment 
(biodiversity as a ‘source’ of pathogens), or 
through the incorporation of new (host) species 
into a given environment, or by increasing 
food sources for disease vectors and thus 
contributing to their proliferation (Keesing et al. 
2006). A good discussion regarding the complex 
influences of biodiversity on infectious diseases 
can be found in Rohr et al. (2020). Although on 
some occasions biodiverse environments can 
be associated with increased risk of infectious 
diseases, biodiversity per se is not the cause of 
emerging infectious diseases. On the contrary, 
biodiversity usually confers protection to human 
health. 

High-biodiversity ecosystems ‘dilute’ 
the density of reservoir hosts and competent 
vectors, minimizing the contact between 
reservoir hosts and vectors and reducing the 
prevalence or load of pathogens in these hosts 
and vectors, thus decreasing the risk of zoonotic 
infections. Greater richness and diversity of 
predators and competitors can also contribute 
to the control of species that are both adapted 
to human-modified environments and have 
the potential to transmit zoonotic pathogens 
(Schmidt & Ostfeld 2001, Keesing et al. 2006, 
Ostfeld 2009, Pongsiri et al. 2009, Civitello et al. 
2015, Kilpatrick et al. 2017). The phenomenon in 
which high species diversity reduces the risk of 
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infectious diseases is called the ‘dilution effect’ 
(Keesing et al. 2006). 

A good example of the dilution effect can be 
found in Lyme disease, which is caused by the 
Borrelia burgdorferi infection and is transmitted 
by ticks in the genus Ixodes. Different mammals 
are natural hosts of B. burgdorferi in nature, 
including the white-footed mouse (Peromyscus 
leucopus), a highly competent reservoir. The 
disease affects human populations living in 
the USA, Canada, and European nations, among 
other countries. In the presence of a great 
diversity of reservoir hosts in nature (white-
footed mouse plus other hosts), ticks feed 
on the blood of different hosts with varied 
competence for Borrelia transmission (many 
with a low reservoir competence), thus ‘diluting’ 
the number of infected ticks and consequently 
the risk of Lyme disease (LoGiudice et al. 2003, 
Ozdenerol 2015, Keesing & Ostfeld 2021). In brief, 
high host diversity including poor competent 
hosts dilutes the infection risk exerted by the 
few highly competent hosts. On the other hand, 
the risk of disease increases as the diversity 
of Borrelia hosts declines and the density 
of competent reservoir hosts increases in a 
particular area (LoGiudice et al. 2003, Keesing & 
Ostfeld 2021). 

The impact of host diversity on the disease 
risk was observed in other models beyond Lyme 
diseases. The risk of human infection by West 
Nile virus and Hantavirus decreases as the 
diversity of their hosts (wild birds and rodents, 
respectively) increases. The opposite correlation 
can also occur, with the risk of human infection 
increasing as host diversity decreases (Mills 
2006, Allan et al. 2009, Ostfeld 2009). These 
two additional examples highlight the dilution 
effect, indicating how biodiversity can ‘dilute’ 
the risk of zoonotic spillover events, protecting 
human health. 

The dilution effect is strongly related to the 
number and relative abundance of taxa, namely 
taxonomic diversity (Naeem et al. 2012), which 
is the kind of “biodiversity” discussed above. 
However, it is essential to consider that other 
forms of biodiversity exist, with varied impacts 
on disease risk. According to Naeem et al. (2012), 
biodiversity can be classified on the basis 
of several dimensions, including taxonomic, 
phylogenetic, genetic, functional, spatial or 
temporal, interaction, and landscape diversities. 
These other dimensions of biodiversity can 
also affect spillover events and the spread of 
pathogens. For example, genetic diversity has 
contributed to the emergence of new pathogens 
or variants, as observed in the SARS-CoV-2 and 
HIV pandemics, facilitating the transmission 
and spread of the viruses to different countries 
(Faria et al. 2014, Andersen et al. 2020). Also, 
interaction diversity (e.g., competition, predation, 
parasitism) has an important influence on 
the risk of emergence and spread of zoonotic 
diseases (Vourc’h et al. 2012) because it 
modulates the contact between species, host 
immunity, transmission of pathogens and food 
webs.

It is also fundamental to stress that the 
dilution effect does not apply to all types of 
zoonotic diseases, being more closely related to 
diseases borne by vectors such as arthropods 
and rodents, as indicated by the examples 
mentioned above. Furthermore, the dilution 
effect may be scale dependent. The protective 
role of biodiversity on disease risk observed 
at the local scale may not be observed when 
the effect of biodiversity is analyzed at the 
global scale. Also, the ecological history of each 
disease is different and, in some cases, is either 
weakly dependent on the degree or dimension 
of biodiversity or its effect is only indirect 
(Rohr et al. 2020). Some diseases of zoonotic 
origin, but that are currently highly specialized 
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on the human host (e.g., measles, tuberculosis, 
pneumonia), have a weak relation with measures 
of biodiversity (Rohr et al. 2020). 

Other factors (e.g., demography, social 
issues) also increase the complexity of the 
relation between biodiversity and zoonotic 
risk. Globally, countries with high biodiversity 
are often precisely those where the burden 
of zoonotic diseases can be observed most 
intensely. For example, Brazil is classically 
affected by multiple types of zoonotic vector-
borne diseases (Magalhaes et al. 2020), despite 
being one of the most biodiverse countries 
in the world. Inadequate sanitary conditions 
and precarious public health systems, which 
are frequently observed in tropical developing 
countries, can override the dilution effect 
associated with high biodiversity, facilitating 
the emergence and spread of diseases in these 
countries (Ellwanger et al. 2021). In brief, the 
connections between biodiversity and zoonotic 
spillover are multiple and complex. Although 
some generalizations are possible, such as the 
dilution effect and the connections that will be 
discussed later in this article, each pathogen 
and spillover event must be analyzed according 
to its natural history and the context of its 
occurrence.

ALIGNMENT OF CONDITIONS 
CONDUCIVE TO ZOONOTIC SPILLOVER
Role of animal groups
An increased risk of spillover events is usually 
associated with particular animal orders, 
including Chiroptera and Rodentia, which are 
composed of species with supposed high 
‘zoonotic potential’. Also, anthropogenic 
modifications in landscapes favoring human 
contact with rodents and bats are usually 
associated with increased risk of zoonotic 
infection. However, some criticism concerning 

these aspects is needed. Some animal species 
can indeed host a high load or diversity of 
zoonotic pathogens due to intrinsic biological 
characteristics (e.g., immune system factors, 
genetic proximity to humans) or due to ecological 
characteristics, such as the sharing of a habitat 
with humans or livestock. However, a greater 
load and variety of pathogens in certain reservoir 
hosts can be circumstantial and is not necessarily 
an intrinsic characteristic of a specific animal 
group. Bats and rodents are often considered 
highly competent in transmitting pathogens to 
humans because they harbor a great diversity 
of zoonotic pathogens, reproduce quickly and 
often inhabit human-related environments. 
Chiroptera and Rodentia are the most numerous 
orders of placental animals, which can increase 
the opportunity for the emergence of potential 
zoonotic agents from these animals (Luis et 
al. 2013, Han et al. 2016). Canidae and Felidae 
are families in the order Carnivora that also 
pose risks to the human population in terms 
of zoonotic spillover because their members 
(e.g., dogs, foxes, cats) host different zoonotic 
pathogens and frequently circulate in human-
dominated areas (Han et al. 2021).

Stray dogs and cats find favorable 
conditions to proliferate in areas where 
urbanization has taken place in a disorderly way, 
and these animals are transmitters of zoonotic 
diseases in urban centers, especially due to 
soil contamination with the eggs and oocysts 
of parasites (Toxocara, Trichuris, Toxoplasma, 
Cystoisospora and Taenia genera, among others) 
released into the environment through animal 
feces. This is a particularly important problem 
for children because they come into greater 
contact with the soil in public squares and 
parks; this affects populations in China, South 
America, highly developed European nations, 
and elsewhere (Szwabe & Błaszkowska 2017, 
Montoya et al. 2018, Fu et al. 2019, Saldanha-Elias 
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et al. 2019). Moreover, leishmaniasis is a major 
zoonotic disease in several Latin American 
countries. This disease is caused by Leishmania 
parasites, which have dogs as common reservoirs. 
The disease is transmitted by phlebotomine 
sandflies that proliferate in areas with a lack of 
environmental sanitation and an abundance of 
domestic animals, thus affecting people living in 
urban and peri-urban areas (Teodoro et al. 1999, 
Marcondes & Day 2019). These cases exemplify 
the role of the order Carnivora as an additional 
source of zoonotic pathogens.

Mammals in the order Rodentia were 
initially classified as the animal group with the 
highest number of zoonotic hosts, with ~11% 
of species having zoonotic potential. Highly 
competent rodent reservoirs show a fast life 
history profile, reaching sexual maturity and 
producing offspring at higher rates earlier in 
life as compared to non-reservoir rodents. Also, 
highly competent rodent reservoirs usually thrive 
in areas with high human population densities 
(Han et al. 2015, 2016). Similar to rodents, bats 
are usually considered to be of special zoonotic 
concern because they have high longevity, the 
colonies are numerous, and the share of viruses 
between different bat species is increased due 
to sympatry (Luis et al. 2013). Bats have immune 
systems with unique adaptations that allow 
these animals to harbor many viruses without 
themselves becoming sick, which contributes 
to making these animals of special concern 
regarding zoonotic risk (Hayman 2019, Subudhi 
et al. 2019). 

However, it is necessary to consider 
some points regarding the role of the orders 
Rodentia and Chiroptera (especially bats) as 
disproportionate zoonotic reservoirs. Limited 
inflammatory responses, high population 
densities and gregarious social behaviors 
observed in some bat species may indeed 
facilitate pathogen transmission among bats, 

especially viruses, contributing to the zoonotic 
potential of this group (Brook & Dobson 2015, 
Streicker & Gilbert 2020). On the other hand, 
the lack of knowledge about the immunity of 
other animal groups, including their ability 
to harbor pathogens asymptomatically, may 
currently be biasing the conclusion that bats or 
rodents are especially competent in harboring 
and transmitting zoonotic pathogens. There is 
also high immunological variation among bat 
species, making generalizations about the ability 
of bats to transmit zoonosis a complicated task. 
Beyond bats and rodents, other animal groups 
can be of great importance for the transmission 
of zoonotic pathogens to humans, although 
they have been less considered and sampled 
in studies involving zoonotic diseases (Streicker 
& Gilbert 2020). A recent study by Mollentze & 
Streicker (2020) reported that the viral zoonotic 
risk was homogenous among mammalian and 
avian species when reservoir hosts of 415 RNA 
and DNA viruses were considered, this being 
the largest dataset to date. Bats and rodents 
were considered unexceptional zoonotic hosts, 
with the proportion of zoonotic viruses varying 
minimally across the taxonomic orders of the 
reservoirs that were analyzed (Mollentze & 
Streicker 2020).

Still concerning bats, human activity 
has effects beyond those expected from 
human-triggered changes in the sizes and 
population structures of these animals. Bats 
are highly sensitive to anthropogenic activity, 
which generates physiological stress in 
these animals. These physiological changes 
impact infection severity and pathogen 
shedding in bats, affecting their associated 
viral populations and risk of spillover events. 
For example, Plowright et al. (2008) observed 
that reproduction and nutritional stress in 
little red flying foxes (Pteropus scapulatus) 
increases the risk of Hendra virus infection in 
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these animals, potentially increasing the risk of 
human infection when these conditions occur. 
Pregnant and lactating female bats showed 
higher Hendra virus infection rates, and animals 
under nutritional stress showed higher infection 
prevalence, a result potentially derived from 
factors such as poor immune defense or greater 
contact with other animals while sharing food 
(Plowright et al. 2008). Furthermore, recent data 
have shown that the ecological conditions of 
the flying fox hosts of Hendra virus influence 
the timing, magnitude, and cumulative intensity 
of virus shedding, thus affecting the spillover 
risk (Becker et al. 2021). Based on these findings, 
changes in bat immunity derived from human-
associated environmental disturbances (e.g., 
habitat loss, food shortages) can be considered 
a mechanism by which human activity can 
increase the risk of spillover events and zoonotic 
diseases, since these immunological changes 
can increase infection severity, viral shedding 
and infection rate in reservoir host populations. 
Moreover, this information indicates that 
the zoonotic risk attributed to a given host is 
circumstantial and not necessarily intrinsic to 
a specific animal group, with human-related 
interference on these hosts influencing the 
circumstantial zoonotic risk.

Host-associated factors, pathogen 
characteristics and the environmental context
Several host-associated factors can increase or 
reduce the risks of spillover events, including 
pathogen load in the source or intermediate 
host, immunity or nutritional status of recipient 
host, similarity of pathogen receptors in the 
different hosts, and genetic/evolutionary 
distance between species. Spillover risk is also 
modulated by ecological conditions (e.g., habitat 
sharing by different species, changing patterns 
disease in reservoir populations, changing 
reservoir species behavior) and environmental 

factors (e.g. , landscape characteristics, 
environmental sanitary conditions, abiotic 
factors: temperature, humidity, rainfall). Adding 
more complexity to spillover risk, characteristics 
of the pathogens (e.g., virulence, transmissibility, 
viral family, host range) and human behavior 
(e.g., interaction with other species, invasion of 
habitats) also affect the spillover risk. The dose 
and route of human exposure to pathogens also 
determine the chances of a pathogen crossing 
the species barrier. After a pathogen successfully 
reaches a new host, other factors will affect the 
outcome of the spillover. Not all spillover events 
result in an epidemic outbreak, and many 
spillover events go unnoticed, without medical 
or epidemiological importance. An outbreak 
or epidemic only occurs when the pathogen, 
after crossing the barriers between species, 
finds favorable conditions for its dissemination 
in the new population. These conditions are 
usually population agglomeration, unplanned 
urbanization, and a large number of susceptible 
hosts (Plowright et al. 2017, Becker et al. 2019, 
Borremans et al. 2019, Ellwanger & Chies 2021, 
Grange et al. 2021, Nandi & Allen 2021).

The human immunological status at the 
time of contact with a new zoonotic pathogen 
influences the outcome of a spillover event. 
Immunosuppressed individuals can be infected 
by viruses, fungi, parasites, and bacteria much 
more easily than individuals with fully competent 
immune systems (Raychaudhuri et al. 2009, 
Vanichanan et al. 2018). Both the maintenance 
of a pandemic status and the raising of new 
pathogenic variants are conditions affected 
by the human immunological status, as can 
be seen in the current COVID-19 pandemic 
dynamics. Similarly, HLA alleles and variants in 
immune-system genes (e.g., single nucleotide 
polymorphisms in Toll-like receptor, cytokine 
and chemokine receptor genes, complement 
system) can either increase or decrease the 
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risk of infection by different pathogens in 
human populations, in addition to affecting 
the progression of infection and the host’s 
pathogen load, and, consequently, disease 
spread in the population (Burgner et al. 2006, 
Chang et al. 2008, Pine et al. 2009, Ferguson et 
al. 2011, Adriani et al. 2013, van den Broek et al. 
2020, de Vries et al. 2020, Sánchez-Luquez et al. 
2021), indicating the importance of host genetics 
as a determinant of spillover risk and outcome. 
Therefore, this information makes it clear that 
when a new pathogen reaches a human being 
due to favorable ecological conditions (e.g., 
contact between species sharing the same 
habitat, land-use changes), the outcome of the 
spillover event will also be conditioned to a 
series of other biological factors.

CONNECTIONS BETWEEN 
ENVIRONMENTAL DISTURBANCES 
AND ZOONOTIC SPILLOVER
Human behavior and demography
Human behavior and demographic changes 
are critical modulators of risk and outcome of 
spillover events. Keeping animals in captivity 
for decorative or entertainment purposes, the 
frequent and close contact with wild species, 
as well as human entry into wild environments, 
facilitate spillover events because they put 
humans in close contact with different species. 
For example, tourist activities involving cave 
exploration in Africa facilitated Marburg 
infection cases in past years. Caves are usually 
visited by numerous animals, including fruit 
bats (Rousettus aegyptiacus) that act as 
Marburg reservoir hosts; caves are places where 
animal deficate and associated pathogens are 
found in abundance (Johnson et al. 1996, CDC 
2009, Amman et al. 2012). Also related to human 
behavior, the use of wild or exotic animals 
as pets can facilitate the introduction of new 

pathogens into the human population (Chomel 
et al. 2007), in addition to being a conservation 
problem affecting wild species.

Human migratory flows can also change the 
epidemiology of infectious diseases through the 
introduction of known and unknown pathogens 
into new areas, by overburdening health systems, 
or by exposing non-vaccinated migrants to new 
pathogens and precarious health conditions. 
These problems are particularly important in 
cases of forced migration due to war, political 
instability and climate change. This indicates that 
the global political instability associated with the 
disparity in terms of access to healthcare directly 
or indirectly affects populations worldwide 
concerning control and prevention of infectious 
diseases (Gushulak & MacPherson 2004, Castelli 
& Sulis 2017, Berry et al. 2020, Ibáñez et al. 2021). 
Recent measles outbreaks in Brazil and Colombia 
due to Venezuelan migration demonstrated 
failures in the vaccination and access to health 
services by Venezuelans (Hotez et al. 2020). The 
number of ‘climate refugees’ will increase as 
climate change intensifies, contributing to both 
the exposure of migrants to new reservoir hosts 
and related pathogens, and to the change in the 
profile of infectious diseases in many countries 
(McMichael 2015). However, we stress that the 
effect of migratory flows on infectious disease 
burden on migrants and refugees is greater than 
the effect on the population of the country that 
receives the immigrants, especially in Europe 
(Castelli & Sulis 2017).

Exploitation of wildlife
Hunting, wildlife trafficking, animal trade in 
‘wet markets,’ and ‘bushmeat’ consumption are 
classic driving forces of spillover events, since 
these practices put humans in close contact with 
pathogens in the meat, blood and other biofluids 
from a wide range of animal species (Karesh et 
al. 2005, Smith et al. 2012, Johnson et al. 2020, 
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Magouras et al. 2020, Zhang & Holmes 2020). The 
expression ‘wet markets’ refers to places where 
different live animal species are sold in close 
contact, sometimes sharing a same cage. Some 
wet markets sell endangered species (Zhang 
& Holmes 2020, Peros et al. 2021). Wet markets 
are frequently associated with bushmeat. The 
expression ‘bushmeat’ refers to the meat of 
hunted wild animals sold in popular or wet 
markets (Pangau-Adam et al. 2012), in some 
situations in the absence of adequate sanitary 
standards according to regulatory agencies 
(Naguib et al. 2021, Peros et al. 2021, Saylors et al. 
2021, WHO 2021). Sanitary requirements may vary 
depending on the sanitary regulations of each 
country, and traditional food markets can be 
considered safe when operating in accordance 
with health regulations (WHO 2021). 

Different from ‘bushmeat’ (hunted meat 
for income purposes), ‘wild meat’ refers to the 
meat of wild animals killed for consumption 
by hunters and their families. As bushmeat 
products usually come from systematic hunting 
activities, including frequent handling of animal 
carcasses, blood and viscera without sanitary 
control or inspection, bushmeat is associated 
with increased spillover risk (Wolfe et al. 2005, 
Pangau-Adam et al. 2012, Peros et al. 2021). For 
these reasons, wet markets and bushmeat 
consumption are recognized as important 
drivers of zoonotic spillover, unlike markets 
or fairs where meat products are sold under 
sanitary inspection, which reduces the risk of 
transmission of pathogens to humans (Wolfe et 
al. 2005, Karesh & Noble 2009, Zhang & Holmes 
2020, Naguib et al. 2021, Peros et al. 2021). In these 
places, spillover risk also exists [as indicated 
by human outbreaks of food-borne diseases in 
high-income nations like the UK (Public Health 
England 2018)], but the risk is lower due to 
sanitary control.

Land-use changes and exploitation of 
Indigenous lands
Other human-mediated activities also facilitate 
spillover events, including deforestation, 
industrial livestock, monoculture farming, and 
mining, among other types of human alterations 
on land. These changes are commonly unified 
in the expression ‘land-use changes.’ Land-
use changes lead to host exposure to a new 
array of pathogens (Murray & Daszak 2013). 
The construction of roads in wild landscapes 
(e.g., Amazon rainforest), besides causing 
damage to ecosystems (Ferrante & Fearnside 
2020a), increases the contact of humans with 
forest-associated animal species and the risk 
of spillover. Although the human presence can 
scare away some animal species, when humans 
invade forest environments to build roads or to 
perform mining and logging activities, among 
other reasons, the contact with animal species 
increases, especially contact with mosquitoes 
and other blood-sucking insects that benefit 
from the human presence that provides an 
additional food source. This closer and more 
frequent interaction between humans and 
anthropophilic insects favors spillover events 
mediated by invertebrate intermediate hosts 
(Ellwanger et al. 2020). 

Extensive land-use changes and associated 
spillover risk are also a major issue for Indigenous 
populations. Due to limited contact with non-
indigenous populations, indigenous peoples 
have weak or no natural/protective immunity 
to pathogens that emerged outside Indigenous 
areas. Such populations also have limited 
access to vaccines and healthcare facilities. 
These factors exacerbate the burden related to 
emerging pathogens in Indigenous populations. 
This is a problem observed in several situations 
and in various parts of the world, from the 
colonization of the Americas and Africa by 
Europeans to the ongoing COVID-19 pandemic 
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in Brazil, among other situations (Valeggia & 
Snodgrass 2015, Ferrante & Fearnside 2020b). 
Of particular concern is a proposed law in 
Brazil (PL191/2020) opening Indigenous lands to 
mining, logging, agriculture and other activities 
by non-indigenous people (Villén-Pérez et al. 
2021). The risk is clear in a project that is already 
moving ahead to grow corn (maize) to feed pigs 
in an Indigenous area in association with a food 
and biofuel company (Ferrante et al. 2021). Land-
use activities in the Indigenous areas expose 
both Indigenous peoples and workers to a new 
range of potential exotic pathogens.

Similarly, human contact with other animal 
species is facilitated by habitat fragmentation 
(Wilkinson et al. 2018). For example, the 
transmission of zoonotic parasitic diseases 
such as leishmaniasis and Chagas disease is 
facilitated in areas with fragmented vegetation 
due to the increased human contact with 
the vectors of Leishmania and Trypanosoma 
parasites (phlebotomine sandflies and 
triatomine bugs, respectively), and changes in 
the composition and infectious status of wild 
hosts (Vaz et al. 2007, Roque et al. 2008, Curi et 
al. 2014, Zaidi et al. 2017, Cardozo et al. 2021). In 
a general sense, the maintenance of habitat 
core/solidity reduces the habitat perimeter, 
diminishing the human contact with other 
species and, consequently, the spillover risk. On 
the other hand, habitat fragmentation increases 
the habitat perimeter and contact zones where 
pathogen transmissions may occur between 
non-human animals and humans (Wilkinson 
et al. 2018, Borremans et al. 2019, Bloomfield 
et al. 2020). Specifically, there are examples 
showing that habitat fragmentation in Africa 
was associated with increased human contact 
with non-human primates, bats, and potentially 
the zoonotic pathogens found in these animals 
(Rulli et al. 2017, Bloomfield et al. 2020). A recent 
study reported that the risk of SARS-related 

coronavirus outbreaks in China is higher in areas 
with forest fragmentation and concentrations of 
livestock and humans (Rulli et al. 2021). Habitat 
fragmentation is strongly associated with loss 
of ecosystem functions, reduced landscape 
connectivity, and biodiversity loss (Haddad et 
al. 2015), which impairs the dilution effect and 
increases the risk of zoonotic diseases through 
this additional mechanism (Allan et al. 2003, 
Keesing et al. 2006). These factors act in synergy 
with the proliferation of species adapted to 
human-modified environments and an increase 
in the load of pathogens hosted by these 
species, thus creating favorable conditions for 
the transmission of relatively new zoonotic 
pathogens to humans.

Livestock industry and antimicrobial 
resistance
The large scale of the livestock industry for the 
production of meat and other animal products 
leads to the confinement of a large number of 
animals in small areas, usually with frequent 
contact with humans and other species. As 
previously described, environments with low 
species richness can limit the dilution effect, 
favoring the spread of pathogens. In addition, 
the movement of livestock within and between 
countries with little or no sanitary inspection 
poses a threat to the dissemination of infectious 
diseases if these animals carry pathogens with 
zoonotic potential, such as Rift Valley fever virus, 
as seen in East-African countries that export 
livestock (Anyamba et al. 2001, Martin et al. 2008, 
Taylor et al. 2016). 

Animals from livestock production also 
act as intermediate hosts for the adaptation 
of pathogens from wildlife before they are 
introduced into the human population. For 
example, swine (e.g., domestic pigs) are 
considered to be ‘mixing vessels’ where strains of 
influenza A viruses from wild birds can undergo 
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genetic recombination or reassortment with 
other viruses present in pigs, originating new 
influenza strains that will then be transmitted 
to the human population. This occurs because 
pigs have cell receptors recognized by avian and 
human influenza viruses, in addition to sharing 
the environment with different species of birds 
and humans (Ma et al. 2008, Ellwanger & Chies 
2021). The role of pigs as mixing vessels for the 
reassortment of influenza viruses has already 
been shown by various studies, confirming 
that pigs can act as intermediate hosts for the 
adaptation of animal influenza viruses before 
being introduced into the human population 
(Zhou et al. 1999, Urbaniak et al. 2017, Zell et al. 
2020). In a study performed in Egypt, Gomaa et 
al. (2018) found evidence of infection with avian 
(H9N2, H5N1), human (pandemic H1N1), and 
swine influenza viruses in pigs. Ganti et al. (2021) 
recently showed that mallard ducks also have 
the potential to act as mixing vessels for the 
reassortment of influenza A viruses. 

Animals from livestock production (e.g., 
cattle, swine, poultry) also pose a zoonotic risk 
to human populations considering diseases 
caused by parasites, especially when these 
animals are raised in inadequate facilities 
and with poor hygiene conditions. Infection 
by Fasciola hepatica, Schistosoma japonicum, 
Trichinella spiralis, among other parasitic 
infections, can affect humans due to problems 
in the practices of breeding, confinement and 
sanitary inspection of livestock animals and 
derived products (Gortázar et al. 2007, Rist et al. 
2015). Livestock can act as bridges (intermediate 
hosts) for the transmission of parasites from 
wild hosts to humans (Gortázar et al. 2007, 
Wiethoelter et al. 2015).

Finally, it is possible that the introduction 
(spillover) of SARS-related viruses (SARS-CoV, 
MERS-CoV) to the human population from bats, 
source hosts for both SARS-related viruses, 

has the participation of intermediate hosts, 
specifically palm civets for SARS-CoV and camels 
for MERS-CoV. However, the direct bat-human 
transmission of these viruses cannot be ruled 
out (Letko et al. 2020). Some farmed species 
such as minks, red foxes, and raccoon dogs, 
potentially acted as intermediary hosts in the 
SARS-CoV-2 spillover into the human population, 
but this represents an open question (Koopmans 
et al. 2021, Lytras et al. 2021). The large number 
of animals observed in industrial livestock 
production and the frequent contact with other 
animal species create numerous opportunities 
for the adaptation of new pathogens before 
reaching the human population.

The intensive use of antimicrobial drugs in 
the livestock industry creates ideal conditions 
for the selection of microorganisms resistant 
to multiple drugs and for the emergence of 
new pathogenic microbial strains, reinforcing 
opportunities for spillover events (Ye et al. 
2016, He et al. 2020, Magouras et al. 2020). 
Drug-resistant pathogens were responsible for 
~20% of all emerging infectious-disease events 
reported since 1940, a phenomenon stemming 
from the pervasive use of antimicrobial drugs 
(Jones et al. 2008). Inappropriate intensive 
use of antimicrobials in human medicine 
(e.g., azithromycin as a supposed COVID-19 
treatment) will contribute to the emergence of 
multiresistant strains (Afshinnekoo et al. 2021). 
The role of drug resistance in the emergence 
of outbreaks and epidemics is expected to 
gain greater attention in the coming decades, 
along with anthropogenic pressures on the 
environment and animal species.

Fires and other drivers of unusual movement 
pattern of animals
Fires, deforestation, and habitat loss induce wild 
animals to assume unusual movement patterns 
and alternative spatial distributions because 
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these animals need to leave their natural habitats 
to obtain food, water and shelter, or to escape 
fire, among other reasons (Johnson et al. 1992, 
Hadley & Betts 2009, Niebuhr et al. 2015, Nimmo 
et al. 2019, Ramos et al. 2020). In response to 
such events, animals often supply their needs in 
forest-city borders and in urban and peri-urban 
areas (e.g., migration of non-human primates 
from wild areas to cities), especially when urban 
settings are established in areas previously 
occupied by forests. For instance, in the Brazilian 
cities of Rio de Janeiro and Porto Alegre, non-
human primates share forest fragments with 
the human population (Cunha et al. 2006, 
Corrêa et al. 2018). Also in Brazil, non-human 
primates (howler monkeys) and forest-dwelling 
mosquitoes found in city-forest interfaces (as a 
consequence of urbanization, habitat loss and 
forest fragmentation) can act as bridges between 
the sylvatic and urban cycles of yellow fever, as 
well as bridges for the spillover of new human 
pathogens from wildlife (Cardoso et al. 2010, 
Almeida et al. 2012, Couto-Lima et al. 2017). 

In addition to inducing animals to explore 
new environments due to habitat loss, fires 
can favor the occurrence of arboviral diseases. 
In Brazil, studies have associated fires with 
outbreaks of Dengue, Zika, Chikungunya and 
Yellow fever, especially in areas where fires have 
an anthropogenic origin and are associated 
with the expansion of agriculture and livestock 
production (Torres et al. 2019, Moreno et al. 2021). 
The increase in fire outbreaks recently observed 
in Brazil and other countries (Pivello et al. 2021) 
will potentially increase the risk of spillover 
events involving arboviruses.

Animal trafficking and the domestication 
of wild animals also contribute to changes in 
the geographical distribution of animal species 
and pathogens with zoonotic potential. These 
processes can put human populations into 
contact with new pathogens from exotic animals 

that have been artificially moved to new areas 
and environments. For example, zoonotic 
Salmonella outbreaks were associated to animal 
trafficking and exotic pets (e.g., Amazon parrots) 
(Marietto-Gonçalves et al. 2010, Saidenberg 
et al. 2021). Also, Kovalev & Mazurina (2022) 
recently evaluated Omsk hemorrhagic fever, 
an endemic disease from Western Siberia and 
associated with muskrats (Ondatra zibethicus). 
Since the Omsk hemorrhagic fever virus (OHFV) 
is closely related to the tick-borne encephalitis 
virus (TBEV), considering genetic and ecological 
characteristics, the authors suggested that the 
OHFV originated directly from the TBEV (Far 
Eastern subtype) in a spillover event involving the 
transmission of the virus from Ixodes persulcatus 
ticks to muskrats after the human introduction 
of O. zibethicus to Western Siberia in the second 
half of the 1930s. The introduction of O. zibethicus 
in this new region was motivated by the potential 
use of muskrat’s valuable fur (Kovalev & Mazurina 
2022).

Unusual animal movement patterns are also 
of epidemiological concern when they involve 
domestic animals with competence for the 
transmission of zoonoses, potentially increasing 
the risks of zoonotic spillover or creating 
conditions for these animals to act as bridges 
to pathogen hosts. Dogs that circulate between 
urban and forest areas can facilitate the spillover 
and spillback (human-to-animal transmission) 
of many pathogens, increasing the infectious-
disease risk for both human and animal 
populations (Martinez et al. 2013, Ellwanger & 
Chies 2019).

Biotic and abiotic environmental changes
Studies performed with mosquitoes are critical 
to comprehend how human disturbance of 
the environment can lead to an increased risk 
of spillover events mediated by vectors (as 
intermediary hosts). Environments with high 
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biodiversity tend to have a greater variety and 
abundance of predators of disease vectors. 
These predators include bats, birds, amphibians 
and larvivorous fishes that feed on mosquitoes 
at different stages of development. Reduction 
of the diversity of predators due to anthropic 
action can benefit the survival and proliferation 
of mosquitoes. Also, abiotic factors (e.g., sunlight, 
wind patterns, temperature, moisture, and the pH 
of water in breeding sites) are altered in degraded 
landscapes and can affect vector distribution 
and proliferation (Burkett-Cadena & Vittor 2018, 
Almeida et al. 2019, Franklinos et al. 2019). For 
example, lower temperatures in the forest can 
slow the larval development of mosquitoes while 
the opposite can occur when forests are cleared, 
resulting in warmer temperatures, greater light 
intensities, and increased availability of nutrients 
in water pools, thus benefitting the larvae of 
some mosquito species (Burkett-Cadena & Vittor 
2018, Franklinos et al. 2019). Consequently, these 
ecological and abiotic changes benefit mosquito 
populations and increase the risk of spillover 
events mediated by vectors (Burkett-Cadena 
& Vittor 2018, Ellwanger & Chies 2018, Almeida 
et al. 2019, Franklinos et al. 2019). From a global 
perspective, it is very likely that climate change in 
the coming decades, including a 1.0–3.5ºC increase 
of global temperature and more frequent climatic 
anomalies (e.g., El Niño, droughts, floods), will lead 
to an increased burden of vector-borne diseases 
and more zoonotic spillover events mediated by 
arthropod vectors (Githeko et al. 2000, Watts et al. 
2019, Wilke et al. 2019b).

Finally, it is essential to consider that disease 
cycles are often complex, being influenced 
by factors that go beyond the abiotic sphere, 
such as biological aspects of vertebrate hosts 
(immunity, genetics, and other characteristics, 
as discussed previously), arthropod resistance 
to insecticides, and stresses on communities of 
vectors (Guedes et al. 2017, Pavlidi et al. 2018). 

Therefore, the impact of climate change on 
vector-borne and other zoonotic diseases will be 
affected by these other factors, making it difficult 
to accurately predict the intensity of impacts 
and distribution of pathogens and diseases in a 
changing world. Considering these uncertainties, 
the precautionary principle must be considered 
(Mahrenholz 2008) and anthropogenic changes 
in the environment must be controlled in order to 
reduce zoonotic risks to the human population.

ANTHROPOGENIC ACTIVITIES IN THE 
AMAZON REGION AND THEIR POTENTIAL 
IMPACTS ON SPILLOVER EVENTS
The Amazon Forest is one of the most biodiverse 
regions in the world, with 70% of the Amazon 
basin located within Brazil (Kirby et al. 2006). Due 
to its high biodiversity combined with a diversity 
of anthropogenic activities in the region, the 
Amazon Forest is a hotspot for the emergence 
of new pathogens (Val 2020). Indeed, there 
are numerous potential new pathogens in the 
Amazon Forest that could pose a risk to human 
populations. However, it is the intense human 
activity in the region that is the main driver of 
potential spillover events in the Amazon Forest, 
not the biodiversity per se. 

Degradation of tropical forests, including the 
Amazon Forest, is strongly derived from economic 
activities linked to the exploitation of minerals, 
oil, and timber, in addition to industrial livestock 
and monoculture production. Globalization and 
economic connections between developed and 
developing countries mean that the triggers of 
environmental degradation in any given part 
of the world can be derived from demands 
of distant countries or even other continents. 
For instance, land-use changes in the Amazon 
Forest, including the increasing deforestation 
rate in the region (see Figure 1, panel a, for more 
data), are partially triggered by the demand for 
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Figure 1. Deforestation rate in Brazilian Amazon Forest (Legal Amazon) between 1988 and 2021 and connections 
between anthropogenic pressures on Amazon Forest and spillover risk. Panel a: between 2004 and 2012, 
deforestation in the Amazon underwent a significant reduction, partly as a result of the strengthening of policies 
for controlling illegal activities. From 2014 onwards there have been increases in deforestation rates, with alarming 
results in 2019, 2020 and 2021, reflecting the weakening of the regulation of illegal activities in the region. Tipping 
point: the point at which the Amazon Forest stops properly providing its environmental services (e.g., hydrological 
cycle, maintenance of carbon stocks), losing many rainforest characteristics and enters into a self-perpetuating 
decline. Data (deforestation rate by year collected on February 1st, 2022) obtained from TerraBrasilis - Programa 
de Cálculo do Desflorestamento da Amazônia (PRODES), Instituto Nacional de Pesquisas Espaciais (INPE); data 
under CC BY-SA 4.0 license (INPE 2022). The graph was plotted using GraphPad Prism. Additional information was 
obtained from Aguiar et al. (2016), Lovejoy & Nobre (2018), and Ferrante & Fearnside (2019). Panel b: deforestation 
and other anthropogenic pressures on Amazon Forest are closely connected activities. These pressures facilitate 
spillover events, the emergence of pathogens and the spread of infectious diseases, affecting populations living 
inside and outside the Amazon region.
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beef and agricultural commodities by China and 
European countries (Fearnside et al. 2013, Fuchs 
et al. 2019, Pendrill et al. 2019), by the bovine 
leather industry in Europe (Mammadova et al. 
2020), among other economic drivers. These 
human activities in the Amazon region facilitate 
the risk of zoonotic spillover events and the 
spread of infectious diseases in multiple ways 
(Figure 1, panel b).

A recent study performed in the Amazon 
rainforest showed that anthropogenic pressure 
on the natural landscape, specifically forest 
fragmentation, decreases mosquito diversity 
and increases the abundance of malaria 
vectors such as Anopheles (Nyssorhynchus) 
darlingi mosquitoes (Chaves et al. 2021). Human 
occupation in forest areas causes loss and 
fragmentation of habitat. In association with 
this, there is an increase in the availability of 
human hosts and a blockage of water flow, thus 
facilitating the dispersion and proliferation 
of human-associated mosquito species with 
medical importance, like An. (Ny.) darlingi 
(Chaves et al. 2021). These data reinforce the 
concept that diversity of species is important 
for the prevention of vector-borne diseases. 
Furthermore, the same study (Chaves et al. 
2021) demonstrates that anthropogenic actions 
favor the abundance of medically important 
mosquitoes not only in urban environments 
but also in tropical forests. In accordance with 
the information described above, Prist et al. 
(2022) recently showed that the construction 
of roads and the associated increase in forest 
fragmentation and forest edges facilitate yellow 
fever virus dispersion. Road construction and 
associated environmental degradation have 
been a threat to the Amazon biome from the 
1970s to the present (Barni et al. 2015, Ferrante & 
Fearnside 2020a).

The construction of hydroelectric dams in 
tropical forest areas can result in population 

explosions of some mosquito species, as 
occurred in Brazil’s Tucuruí Dam for Mansonia 
species (Tadei et al. 1991, Fearnside 1999) and 
at the Samuel Dam for Culex species (Fearnside 
2005). In the first years after dam construction, 
large areas of the reservoirs were covered by 
aquatic plants (macrophytes) that provide 
breeding grounds for Mansonia mosquitoes 
(Fearnside 2001). Potential spillover events 
involving mosquito-borne pathogens are 
therefore a major concern in the Amazon region.

Hunting and commercialization of wild 
animals in the Amazon region is very intense, 
with a bushmeat market reaching up to 6.49 kg 
per person/year in the central Amazon (quantity 
varies by Amazon region) (van Vliet et al. 2014, 
El Bizri et al., 2020). These data suggest that 
spillover events derived from bushmeat practices 
are a recurrent possibility in the Amazon region, 
similar to what happens in other countries with 
high biodiversity (Ellwanger & Chies 2021).

In addition to habitat fragmentation, 
construction of water reservoirs and bushmeat 
practices, logging, mining, and other exploitative 
(and often illegal) economic activities in the 
Amazon region trigger a number of ecological 
and demographic changes, including migratory 
flows, habitat loss, unplanned urbanization, 
prostitution, pollution, climate change, and 
extreme weather events (Ellwanger et al. 2020). As 
discussed earlier in this article, these conditions 
directly or indirectly favor the occurrence of 
spillover events and the spread of emerging 
pathogens. For this reason, deforestation in 
the Amazon Forest and other anthropogenic 
activities in the region create the “perfect storm” 
of infectious diseases in the Amazon region 
(reviewed in Ellwanger et al. 2020). 

The potential emergence of pathogens in 
the Amazon Forest may affect populations living 
in the region as well as people living outside the 
Amazon region. As exemplified by the COVID-19 
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pandemic, emerging pathogens can spread 
across the world very easily and quickly. Thus, 
conserving the Amazon Forest is critical not only 
to protect biodiversity and associated ecosystem 
services (e.g., water cycling, carbon stock 
maintenance); protecting the Amazon biome is 
a global public health measure (Fearnside 2008, 
Ellwanger et al., 2020).

Combating deforestation, mining and other 
types of land-use change is difficult to achieve, 
but this is not an impossible task. In Brazil, 
deforestation in the Amazon region declined 
greatly (~70%) between 2005 and 2012 (Figure 1, 
panel a), in part due to government policies (West 
et al. 2019, Dobson et al. 2020, West & Fearnside 
2021). These policies have ended under Brazil’s 
presidential administration that took office in 
January 2019 (Ferrante & Fearnside 2019, 2020b), 
but the potential for controlling deforestation 
through government policies remains an 
essential lesson. A recent study (Dobson et al. 
2020) pointed out that the costs of mitigating a 
pandemic such as the COVID-19 are much greater 
(estimated at US$8.1 to US$15.8 trillion) than 
the amount that would have to be invested to 
prevent the main drivers of emerging infectious 
disease events, estimated at US$17.7 to US$26.9 
billion per year. Of note, the prevention costs 
for 10 years would represent ~2% of the costs 
of the COVID-19 pandemic (Dobson et al. 2020). 
In other words, conservation actions protect 
the environment, limit the spread of infectious 
diseases, and are cheaper than bearing the 
burden of emerging infectious disease events. 
Also, in Brazil, the demarcation of Indigenous 
lands (Terras Indígenas) is an effective way of 
limiting the exploitation of natural resources and 
land-use changes while protecting traditional 
communities. The contribution of protected 
areas governed by local communities and 
Indigenous peoples in the field of biodiversity 
conservation is widely recognized (Corrigan et al. 

2018). Considering that Brazil holds most of the 
territory of the Amazon Forest and has strong 
political and economic powers, the country 
needs to take the lead in the conservation of 
the region, contributing to the reduction of the 
risks of potential spillover events in the Amazon 
Forest.

CONCLUSION
This article synthesized the main connections 
between human-related environmental 
disturbances, ecological modifications, and 
increased risk of spillover events (Figure 2), 
primarily based on examples and models from 
different world regions. In brief, anthropogenic 
disturbances in the environment lead to 
changes in ecological niches, reduction of the 
dilution effect, increased contact between 
humans and other animals, changes in the 
incidence and load of pathogens in animal 
populations, and alterations in the abiotic 
factors of landscapes, among other ecological 
changes. These alterations can increase 
the risk of spillover events, facilitating new 
infectious disease outbreaks. In addition to our 
interpretation of the issues addressed in this 
paper, we emphasize that other models also 
explain the relationship between human activity, 
environmental disturbances, and emerging 
infectious diseases (e.g., Wolfe et al. 2007, Parrish 
et al. 2008, Karesh et al. 2012, Morse et al. 2012, 
Murray & Daszak 2013, Faust et al. 2018, Glidden 
et al. 2021). These interpretations are generally 
not mutually exclusive, and in most cases 
are complementary. Above all, it is important 
to keep in mind that generalist explanations 
for the emergence of infectious diseases will 
always be incomplete (Jones et al. 2013). Each 
outbreak, epidemic, pandemic, or small-scale 
zoonotic event has its specific characteristics 
and triggers that are inherent to the place and 
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context in which it occurred. Considering the 
specificities of each environment, our review 
brought a discussion specifically focused on 
the Amazon rainforest, showing that increasing 
anthropogenic damage in the region may also 
increase the risk of zoonotic spillover events 
and spread of infectious diseases, impacting the 
Amazon populations and potentially populations 
elsewhere (Figure 1). Finally, conservation efforts 
lead to benefits to different global spheres in 
an integrated manner, as they help to contain 
anthropic activities on the environment and to 
reduce the risk of zoonotic spillover events.
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